Abstract

100 years after Rosa Lee (1912) showed that higher mortality on faster growing fish can alter length-at-age distributions in fish populations, we present a computationally-efficient and parsimonious method for modeling size-selective mortality within a commonly-used assessment model, Stock Synthesis. Stock Synthesis allows the normal distribution of length-at-age to be partitioned into three or five overlapping platoons with slow, medium, or fast growth trajectories. The platoons are tracked separately in the model, and experience different degrees of size-selective fishing pressure and mortality, but are assumed to be unobservable except through changes in the length distribution. Simulations are used to explore this phenomenon in conjunction with dome-shaped selectivity, an alternative explanation for observing fewer than expected large fish in sampled data, but with very different implications for population productivity. For data simulated both with and without platoons, misspecification of the assumptions about growth are found to bias model results, with selectivity often incorrectly identified as the cause of fewer observations of larger fish. Trends in dome-shaped selectivity were explored as a potential diagnostic of model misspecification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.