Abstract

Molecules with an excess number of hydrogen-bonding partners play a crucial role in fundamental chemical processes, ranging from anomalous diffusion in supercooled water to transport of aqueous proton defects and ordering of water around hydrophobic solutes. Here we show that overcoordinated hydrogen-bond environments can be identified in both the ambient and supercooled regimes of liquid water by combining experimental Raman multivariate curve resolution measurements and machine learning accelerated quantum simulations. In particular, we find that OH groups appearing in spectral regions usually associated with non-hydrogen-bonded species actually correspond to hydrogen bonds formed in overcoordinated environments. We further show that only these species exhibit a turnover in population as a function of temperature, which is robust and persists under both constant pressure and density conditions. This work thus provides a new tool to identify, interpret, and elucidate the spectral signatures of crowded hydrogen-bond networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call