Abstract

ABSTRACT Transiting exoplanets orbiting active stars frequently occult starspots and faculae on the visible stellar disc. Such occultations are often rejected from spectrophotometric transits, as it is assumed they do not contain relevant information for the study of exoplanet atmospheres. However, they can provide useful constraints to retrieve the temperature of active features and their effect on transmission spectra. We analyse the capabilities of the James Webb Space Telescope in the determination of the spectra of occulted starspots, despite its lack of optical wavelength instruments on board. Focusing on K and M spectral types, we simulate starspots with different temperatures and in different locations of the stellar disc, and find that starspot temperatures can be determined to within a few hundred kelvins using NIRSpec/Prism and the proposed NIRCam/F150W2+F322W2’s broad wavelength capabilities. Our results are particularly promising in the case of K and M dwarfs of mag$_K \lesssim 12.5$ with large temperature contrasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.