Abstract

We show that it is both observationally allowable and theoretically possible to have large fluctuations in the dark energy equation of state as long as they occur at ultra-low redshifts z<0.02. These fluctuations would masquerade as a local transition in the Hubble rate of a few percent or less and escape even future, high precision, high redshift measurements of the expansion history and structure. Scalar field models that exhibit this behavior have a sharp feature in the potential that the field traverses within a fraction of an e-fold of the present. The equation of state parameter can become arbitrarily large if a sharp dip or bump in the potential causes the kinetic and potential energy of the field to both be large and have opposite sign. While canonical scalar field models can decrease the expansion rate at low redshift, increasing the local expansion rate requires a non-canonical kinetic term for the scalar field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.