Abstract

In this paper we develop a Young diagram approach to constructing higher dimensional operators formed from massless superfields and their superderivatives in N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 supersymmetry. These operators are in one-to-one correspondence with non-factorizable terms in on-shell superamplitudes, which can be studied with massless spinor helicity techniques. By relating all spin-helicity variables to certain representations under a hidden U(N) symmetry behind the theory, we show each non-factorizable superamplitude can be identified with a specific Young tableau. The desired tableau is picked out of a more general set of U(N) tensor products by enforcing the supersymmetric Ward identities. We then relate these Young tableaux to higher dimensional superfield operators and list the rules to read operators directly from Young tableau. Using this method, we present several illustrative examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.