Abstract
This paper presents an integrated platform for multi-sensor equipment diagnosis and prognosis. This integrated framework is based on hidden semi-Markov model (HSMM). Unlike a state in a standard hidden Markov model (HMM), a state in an HSMM generates a segment of observations, as opposed to a single observation in the HMM. Therefore, HSMM structure has a temporal component compared to HMM. In this framework, states of HSMMs are used to represent the health status of a component. The duration of a health state is modeled by an explicit Gaussian probability function. The model parameters (i.e., initial state distribution, state transition probability matrix, observation probability matrix, and health-state duration probability distribution) are estimated through a modified forward–backward training algorithm. The re-estimation formulae for model parameters are derived. The trained HSMMs can be used to diagnose the health status of a component. Through parameter estimation of the health-state duration probability distribution and the proposed backward recursive equations, one can predict the useful remaining life of the component. To determine the “value” of each sensor information, discriminant function analysis is employed to adjust the weight or importance assigned to a sensor. Therefore, sensor fusion becomes possible in this HSMM based framework. The validation of the proposed framework and methodology are carried out in real world applications: monitoring hydraulic pumps from Caterpillar Inc. The results show that the increase of correct diagnostic rate is indeed very promising. Furthermore, the equipment prognosis can be implemented in the same integrated framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.