Abstract

We discuss gauge mediation in the case where the hidden sector is strongly coupled but, via the gauge-gravity correspondence, admits a weakly-coupled description in terms of a warped higher-dimensional spacetime. In this framework, known as holographic gauge mediation, the visible-sector gauge group is realized in the gravitational description by probe D-branes and the nonsupersymmetric state by normalizable perturbations to the geometry. Using the formalism of general gauge mediation, supersymmetry-breaking soft terms in the visible sector can be related to the two-point functions of the hidden-sector current superfield that couples to the visible-sector gauge group. Such correlation functions cannot be directly calculated in the strongly coupled field theory but can be determined using the gauge-gravity correspondence and holographic renormalization. We explore this procedure by considering a toy geometry where such two-point functions can be explicitly calculated. Unlike previous implementations of holographic gauge mediation where sfermion masses were not calculable directly in a purely holographic framework, such terms are readily obtained via these correlators, while (due to the simplicity of the geometry considered) the visible-sector gauginos remain massless to leading order in the visible-sector coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.