Abstract
AbstractIn the existing statistical literature, the almost default choice for inference on inhomogeneous point processes is the most well‐known model class for inhomogeneous point processes: reweighted second‐order stationary processes. In particular, theK‐function related to this type of inhomogeneity is presented astheinhomogeneousK‐function. In the present paper, we put a number of inhomogeneous model classes (including the class of reweighted second‐order stationary processes) into the common general framework of hidden second‐order stationary processes, allowing for a transfer of statistical inference procedures for second‐order stationary processes based on summary statistics to each of these model classes for inhomogeneous point processes. In particular, a general method to test the hypothesis that a given point pattern can be ascribed to a specific inhomogeneous model class is developed. Using the new theoretical framework, we reanalyse three inhomogeneous point patterns that have earlier been analysed in the statistical literature and show that the conclusions concerning an appropriate model class must be revised for some of the point patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.