Abstract

We expose a hidden scaling symmetry of the Navier-Stokes equations in the limit of vanishing viscosity, which stems from dynamical space-time rescaling around suitably defined Lagrangian scaling centres. At a dynamical level, the hidden symmetry projects solutions which differ up to Galilean invariance and global temporal scaling onto the same representative flow. At a statistical level, this projection repairs the scale invariance, which is broken by intermittency in the original formulation. Following previous work by the first author, we here postulate and substantiate with numerics that hidden symmetry statistically holds in the inertial interval of fully developed turbulence. We show that this symmetry accounts for the scale-invariance of a certain class of observables, in particular, the Kolmogorov multipliers. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.