Abstract

We show that a continuous-wave (cw) pump beam at a wavelength of 532 nm produces substantial light-induced (LI) absorption in the visible range in initially transparent undoped LiNbO3 crystals. The LI absorption coefficient stays linear in the pump intensity I(p) up to I(p)(max)=48 kW/cm2. Together with other features including long-term stretched-exponential relaxation of the LI absorption, it indicates that the present concept of LI electron processes in this important optical material must be revised: the amount of photoactive electrons increases already within the cw intensity range. A quantitative model is proposed that explains the experimental data and employs two-step excitations from filled localized states near the valence band via intermediate deep centers into the conduction band. The introduced localized states serve as a hidden reservoir of electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.