Abstract
A lattice analogue of the Kac-Moody algebra is constructed. It is shown that the generators of the quantum algebra with the deformation parameterq=exp(iπ/k+h) can be constructed in terms of generators of the lattice Kac-Moody algebra (LKM) with the central chargek. It appears that there exists a natural correspondence between representations of the LKM algebra and the finite dimensional quantum group. The tensor product for representations of the LKM algebra and the finite dimensional quantum algebra is suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.