Abstract
PurposeThe purpose of this paper is to construct a multiwing chaotic system that has hidden attractors with multiple stable equilibrium points. Because the multiwing hidden attractors chaotic systems are safer and have more dynamic behaviors, it is necessary to construct such a system to meet the needs of developing engineering.Design/methodology/approachBy introducing a multilevel pulse function into a three-dimensional chaotic system with two stable node–foci equilibrium points, a hidden multiwing attractor with multiple stable equilibrium points can be generated. The switching behavior of a hidden four-wing attractor is studied by phase portraits and time series. The dynamical properties of the multiwing attractor are analyzed via the Poincaré map, Lyapunov exponent spectrum and bifurcation diagram. Furthermore, the hardware experiment of the proposed four-wing hidden attractors was carried out.FindingsNot only unstable equilibrium points can produce multiwing attractors but stable node–foci equilibrium points can also produce multiwing attractors. And this system can obtain 2N + 2-wing attractors as the stage pulse of the multilevel pulse function is N. Moreover, the hardware experiment matches the simulation results well.Originality/valueThis paper constructs a new multiwing chaotic system by enlarging the number of stable node–foci equilibrium points. In addition, it is a nonautonomous system that is more suitable for practical projects. And the hardware experiment is also given in this article which has not been seen before. So, this paper promotes the development of hidden multiwing chaotic attractors in nonautonomous systems and makes sense for applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.