Abstract

BackgroundDefining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions.ResultsWe tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele. This enabled us to perform a DRB-STR matching method for the recently discovered MHC allele.ConclusionsThis finding is critical for the conservation of the Iberian ibex since it directly affects the identification of the units of this species that should be managed and conserved separately (Evolutionarily Significant Units).

Highlights

  • Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management

  • Cryptic genetic diversity is critical in conservation biology since it directly affects the identification of the units of species that need to be managed and conserved separately (Evolutionarily Significant Units, ESU) [2]

  • Host-parasite co-evolution is assumed to maintain this level of polymorphism in the major histocompatibility complex (MHC) loci [7], even though the molecular mechanisms involved in maintaining such extraordinary MHC polymorphism in vertebrates are still debated by epidemiologists, immunogeneticists and evolutionary biologists alike [8]

Read more

Summary

Introduction

Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. That is, unreported allelic diversity in already studied species or populations, is of great significance in the maintaining of the evolutionary potential of natural populations and the execution of appropriate management methods [1]. The major histocompatibility complex (MHC) plays a key part in the recognition of foreign antigen and the immune response to pathogens and parasites in vertebrates [3]. For this reason, MHC and immune gene variation are regarded as a barometer for the genetic health of wild populations [4]. Many endangered and currently non-endangered species such as Arabian oryx (Oryx leucoryx), muskox (Ovibos moschatus), moose (Alces alces), fallow deer (Dama dama), beaver (Castor fiber), Asiatic lion (Panthera leo persica), cotton-top tamarin (Saguinus oedipus), cheetah (Acinonyx jubatus) and Tasmanian devil (Sarcophilus harrisii) all exhibit reduced allelic variation or even monomorphism at the MHC loci caused mainly by severe population bottlenecks [9,10,11,12,13,14,15,16]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call