Abstract
Activity detection in atrial fibrillation (AF) electrograms (EGMs) is a key concept to understand the mechanisms of this frequent arrhythmia and design new strategies for its treatment. We present a new method that employs Hidden Markov Models (HMMs) to identify activity presence in bipolar EGMs. The method is fully unsupervised and hence it does not require labeled training data. The HMM activity detection method was validated and compared to the non-linear energy operator (NLEO) method for a set of manually annotated EGMs. The HMM performed better than the NLEO and exhibited more robustness in the presence of low voltage fragmented EGMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.