Abstract

In this article, a transient identification method based on a stochastic approach with the hidden Markov model (HMM) has been suggested and evaluated experimentally for the classification of nine types of transients in nuclear power plants (NPPs). A transient is defined as when a plant proceeds to an abnormal state from a normal state. Identification of the types of transients during an early accident stage in NPPs is crucial for proper action selection. The transient can be identified by its unique time-dependent patterns related to the principal variables. The HMM, a double-stochastic process, can be applied to transient identification that is a spatial and temporal classification problem under a statistical pattern-recognition framework. The trained HMM is created for each transient from a set of training data by the maximum-likelihood estimation method which uses a forward-backward algorithm and the Baum-Welch re-estimation algorithm. The transient identification is determined by calculating which model has the highest probability for given test data using the Viterbi algorithm. Several experimental tests have been performed with normalization methods, clustering algorithms, and a number of states in HMM. There are also a few experimental tests that have been performed, including superimposing random noise, adding systematic error, and adding untrained transients to verify its performance and robustness. The proposed real-time transient identification system has been proven to have many advantages, although there are still some problems that should be solved before applying it to an operating NPP. Further efforts are being made to improve the system performance and robustness in order to demonstrate reliability and accuracy to the required level. © 2002 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.