Abstract

Dynamic spectrum access is a paradigm used to access the spectrum dynamically. A hidden Markov model (HMM) is one in which you observe a sequence of emissions, but do not know the sequence of states the model went through to generate the emissions. Analysis of hidden Markov models seeks to recover the sequence of states from the observed data. In this paper, we estimate the occupancy state of channels using hidden Markov process. Using Viterbi algorithm, we generate the most likely states and compare it with the channel states. We generated two HMMs, one slowly changing and another more dynamic and compare their performance. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.