Abstract

It has been demonstrated that myoelectric signal (MES) automatic speech recognition (ASR) using an hidden Markov model (HMM) classifier is resilient to temporal variance, which offers improved robustness compared to the linear discriminant analysis (LDA) classifier. The overall performance of the MES ASR can be further enhanced by optimizing the features and structure of the HMM classifier to improve classification rate. Nevertheless, the HMM classifier has already shown that it would effectively complement an acoustic classifier in a multimodal ASR system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.