Abstract

This paper involves one crucial assumption; namely, that the statistical predictions of quantum mechanics for Bell's variant of the EPR experiment will continue to be verified as detector efficiencies are improved and the need for coincidence counters is eliminated. This assumption entails that any hidden-variables theory for quantum mechanics must violate Bell's inequality—the inequality derived in Bell (1964). It is shown here that four locality conditions are involved in the derivation of Bell's inequality; and that a violation of any of the four locality conditions will either entail the existence of superluminal influences or the existence of superluminal signals (superluminal influences that can be used to transmit information), if conspiratorial theories can be ruled out. The attempts so far to rule out conspiratorial theories are all found to be rather dubious, but there are other considerations developed here that rule them out convincingly. Finally, it is demonstrated that violations of each of the four locality conditions can be used to transmit information superluminally, if certain auxiliary conditions are satisfied. This is of particular interest because one of these conditions corresponds to a condition dubbed “completeness” by Jon Jarrett. Jarrett and others have suggested that violations of completeness cannot be used to send information superluminally. Demonstrating otherwise is, perhaps, the most significant result obtained in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.