Abstract
In condensed matter systems, the electronic degrees of freedom are often entangled to form complex composites, known as hidden orders, which give rise to unusual properties, while escaping detection in conventional experiments. Here we demonstrate the existence of hidden k-space magnetoelectric multipoles in nonmagnetic systems with broken space-inversion symmetry. These k-space magnetoelectric multipoles are reciprocal to the real-space charge dipoles associated with the broken inversion symmetry. Using the prototypical ferroelectric PbTiO_{3} as an example, we show that their origin is a spin asymmetry in momentum space resulting from the broken space inversion symmetry associated with the ferroelectric polarization. In PbTiO_{3}, the k-space spin asymmetry corresponds to a pure k-space magnetoelectric toroidal moment, which can be detected using magnetic Compton scattering, an established tool for probing magnetism in ferromagnets or ferrimagnets with a net spin polarization, which has not been exploited to date for nonmagnetic systems. In particular, the k-space magnetoelectric toroidal moment combined with the spin-orbit interaction manifest in an antisymmetric magnetic Compton profile that can be reversed using an electric field. Our work suggests an experimental route to directly measuring and tuning hidden k-space magnetoelectric multipoles via specially designed magnetic Compton scattering measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.