Abstract
We study the thermodynamic formalism for particular types of sub-additive sequences on a class of subshifts over countable alphabets. The subshifts we consider include factors of irreducible countable Markov shifts under certain conditions, which we call irreducible countable sofic shifts. We show the variational principle for topological pressure for some sub-additive sequences with tempered variation on irreducible countable sofic shifts. We also study conditions for the existence and uniqueness of invariant ergodic Gibbs measures and the uniqueness of equilibrium states. Applications are given to some dimension problems and study of factors of (generalized) Gibbs measures on certain subshifts over countable alphabets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.