Abstract
Molecular recognition is fundamental to transcription regulation. As a transcription factor, the tumor suppressor p53 has to recognize either specific DNA sequences or repressor protein partners. However, the molecular mechanism underlying the p53 conformational switch from the DNA-bound to repressor-bound states is not fully characterized. The highly charged nature of these interacting molecules prompted us to explore the nonbonded energy contributions behind molecular recognition of either a DNA or the repressor protein iASPP by p53 DNA binding domain (p53DBD), using molecular dynamics simulation followed by rigorous analyses of energy terms. Our results illuminate the allosteric pathway by which iASPP binding to p53 diminishes binding affinity between p53 and DNA. Even though the p53DBD uses a common framework of residues for recognizing both DNA and iASPP, a comparison of the electrostatics in the two p53DBD complexes revealed significant differences in residue-wise contributions to the electrostatic energy. We found that an electrostatic allosteric communication path exists in the presence of both substrates. It consists of evolutionarily conserved residues, from residue K120 of the binding loop L1 to a distal residue R213 of p53DBD. K120 is near the DNA in the p53DBD-DNA complex, whereas iASPP binding moves it away from its DNA binding position in the p53DBD-iASPP complex. The “energy hubs” (the residues show a higher degree of connectivity with other residues in the electrostatic networks) determined from the electrostatic network analysis established that this conformational change in K120 completely rewires the electrostatic network from K120 to R213, thereby impeding DNA binding. Furthermore, we found shifting populations of hydrogen bonds and salt bridges reduce pairwise electrostatic energies within p53DBD in its DNA-bound state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.