Abstract

Quadratically Constrained Quadratic Programming (QCQP) has a broad spectrum of applications in engineering. The general QCQP problem is NP–Hard. This article considers QCQP with Toeplitz-Hermitian quadratics, and shows that it possesses hidden convexity: it can always be solved in polynomial-time via Semidefinite Relaxation followed by spectral factorization. Furthermore, if the matrices are circulant, then the QCQP can be equivalently reformulated as a linear program, which can be solved very efficiently. An application to parametric power spectrum sensing from binary measurements is included to illustrate the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.