Abstract
The modern power grid is undergoing unprecedented levels of transformations due to the rising prevalence of diverse power entities, cyber-enablement of grid components and energy deregulations. In this paper, we focus on distribution networks (DNs) to enable the seamless plug-and-play coordination of actuating cyber-enabled power entities for cost-effective and feasible system operations. The proposed distributed algorithm empowers individual cyber-physical agents residing in active power nodes with the ability to iteratively compute local actuation setpoints by exchanging information with neighbouring entities. The main contribution of this work is the identification of hidden convexities in the original non-convex optimal power flow (OPF) formulation for the DN via strategic decomposition and strong duality principles. These eliminate the need for OPF relaxations/approximations. Strong convergence and feasibility results are presented via theoretical analysis and practical simulation studies conducted on realistic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.