Abstract

Recently, chaotic behavior has been studied in dynamical systems that generates hidden attractors. Most of these systems have quadratic nonlinearities. This paper introduces a new methodology to develop a family of three-dimensional hidden attractors from the switching of linear systems. This methodology allows to obtain strange attractors with only one stable equilibrium, attractors with an infinite number of equilibria or attractors without equilibrium. The main matrix and the augmented matrix of every linear system are considered in Rouché-Frobenius theorem to analyze the equilibrium of the switching systems. Also, a systematic search assisted by a computer is used to find the chaotic behavior. Basic chaotic properties of the attractors are verified by the Lyapunov exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.