Abstract

Memristor, as a typical nonlinear element, is able to produce chaotic signals in chaotic systems easily. Chaotic systems have potential applications in secure communications, information encryption, and other fields. Therefore, it is of importance to generate abundant dynamic behaviors in a single chaotic system. In this paper, a novel memristor-based chaotic system without equilibrium points is proposed. One of the essential features is the absence of symmetry in this system, which increases the complexity of the new system. Then, the nonlinear dynamic behaviors of the system are analyzed in terms of chaos diagrams, bifurcation diagrams, Poincaré maps, Lyapunov exponent spectra, the sum of Lyapunov exponents, phase portraits, 0–1 test, recurrence analysis and instantaneous phase. The results of the sum of Lyapunov exponents show that the given system is a quasi-Hamiltonian system with certain initial conditions (IC) and parameters. Next, other critical phenomena, such as hidden multi-scroll attractors, abundant coexistence characteristics, are found characterized through basins of attraction and others. Especially, it reveals some rare phenomena in other systems that multiple hidden hyperchaotic attractors coexist. Finally, the circuit implementation based on Micro Control Unit (MCU) confirms theoretical analysis and the numerical simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.