Abstract

We present here results that demonstrate the potential of near-infrared (NIR)-red models to estimate chlorophyll- a (chl- a) concentration in coastal waters using data from the spaceborne Hyperspectral Imager for the Coastal Ocean (HICO). Since the recent demise of the MEdium Resolution Imaging Spectrometer (MERIS), the use of sensors such as HICO has become critical for coastal ocean color research. Algorithms based on two- and three-band NIR-red models, which were previously used very successfully with MERIS data, were applied to HICO images. The two- and three-band NIR-red algorithms yielded accurate estimates of chl- a concentration, with mean absolute errors that were only 10.92% and 9.58%, respectively, of the total range of chl- a concentrations measured over a period of several months in 2012 and 2013 on the Taganrog Bay in Russia. Given the uncertainties in the radiometric calibration of HICO, the results illustrate the robustness of the NIR-red algorithms and validate the radiometric, spectral, and atmospheric corrections applied to HICO data as they relate to estimating chl- a concentration in productive coastal waters. Inherent limitations due to the characteristics of the sensor and its orbit prohibit HICO from providing anywhere near the level of frequent global coverage as provided by standard multispectral ocean color sensors. Nevertheless, the results demonstrate the utility of HICO as a tool for determining water quality in select coastal areas and the cross-sensor applicability of NIR-red models and provide an indication of what could be achieved with future spaceborne hyperspectral sensors in estimating coastal water quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.