Abstract
This paper studies aggregate complementarity without price or income variation. We show that for a class of utility functions, variation in non-price observables allows one to recover a measure of complementarity similar to Hicksian complementarity. In addition, the entire Slutsky matrix can be recovered up to scale without price variation. We then examine aggregate complementarity in latent utility models used in discrete choice, bundles, and matching. We show that classical linear instrumental variables can recover Hicksian complementarity for the special case of quadratic utility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.