Abstract
The Internet of Things (IoT) paradigm holds significant promises for remote health monitoring systems. Due to their life- or mission-critical nature, these systems need to provide a high level of availability and accuracy. On the one hand, centralized cloud-based IoT systems lack reliability, punctuality and availability (e.g., in case of slow or unreliable Internet connection), and on the other hand, fully outsourcing data analytics to the edge of the network can result in diminished level of accuracy and adaptability due to the limited computational capacity in edge nodes. In this paper, we tackle these issues by proposing a hierarchical computing architecture, HiCH, for IoT-based health monitoring systems. The core components of the proposed system are 1) a novel computing architecture suitable for hierarchical partitioning and execution of machine learning based data analytics, 2) a closed-loop management technique capable of autonomous system adjustments with respect to patient’s condition. HiCH benefits from the features offered by both fog and cloud computing and introduces a tailored management methodology for healthcare IoT systems. We demonstrate the efficacy of HiCH via a comprehensive performance assessment and evaluation on a continuous remote health monitoring case study focusing on arrhythmia detection for patients suffering from CardioVascular Diseases (CVDs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.