Abstract

BackgroundChanges in spatial chromatin interactions are now emerging as a unifying mechanism orchestrating the regulation of gene expression. Hi-C sequencing technology allows insight into chromatin interactions on a genome-wide scale. However, Hi-C data contains many DNA sequence- and technology-driven biases. These biases prevent effective comparison of chromatin interactions aimed at identifying genomic regions differentially interacting between, e.g., disease-normal states or different cell types. Several methods have been developed for normalizing individual Hi-C datasets. However, they fail to account for biases between two or more Hi-C datasets, hindering comparative analysis of chromatin interactions.ResultsWe developed a simple and effective method, HiCcompare, for the joint normalization and differential analysis of multiple Hi-C datasets. The method introduces a distance-centric analysis and visualization of the differences between two Hi-C datasets on a single plot that allows for a data-driven normalization of biases using locally weighted linear regression (loess). HiCcompare outperforms methods for normalizing individual Hi-C datasets and methods for differential analysis (diffHiC, FIND) in detecting a priori known chromatin interaction differences while preserving the detection of genomic structures, such as A/B compartments.ConclusionsHiCcompare is able to remove between-dataset bias present in Hi-C matrices. It also provides a user-friendly tool to allow the scientific community to perform direct comparisons between the growing number of pre-processed Hi-C datasets available at online repositories. HiCcompare is freely available as a Bioconductor R package https://bioconductor.org/packages/HiCcompare/.

Highlights

  • Changes in spatial chromatin interactions are emerging as a unifying mechanism orchestrating the regulation of gene expression

  • Hi-C data representation and properties HiCcompare focuses on the joint analysis of multiple Hi-C datasets represented by chromatin interaction matrices, where rows and columns represent genomic regions, and cells contain interaction counts

  • A chromosome-specific Hi-C matrix is a square matrix of size N × N, where N is the number of genomic regions of size X on a chromosome

Read more

Summary

Results

We developed a simple and effective method, HiCcompare, for the joint normalization and differential analysis of multiple Hi-C datasets. The method introduces a distance-centric analysis and visualization of the differences between two Hi-C datasets on a single plot that allows for a data-driven normalization of biases using locally weighted linear regression (loess). HiCcompare outperforms methods for normalizing individual Hi-C datasets and methods for differential analysis (diffHiC, FIND) in detecting a priori known chromatin interaction differences while preserving the detection of genomic structures, such as A/B compartments

Conclusions
Background
Results and discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call