Abstract
The linearization of the stromal extracellular matrix (ECM) by cancer associated fibroblasts (CAFs) facilitates tumor cell growth and metastasis. However, the mechanism by which the ECM is remodeled is not fully understood. Hic-5 (TGFβ1i1), a focal adhesion scaffold protein, has previously been reported to be crucial for stromal ECM deposition and remodeling in vivo. Herein we show that CAFs lacking Hic-5 exhibit a significant reduction in the ability to form fibrillar adhesions, a specialized form of focal adhesion that promote fibronectin fibrillogenesis. Hic-5 was found to promote fibrillar adhesion formation through a newly characterized interaction with tensin1. Furthermore, Src dependent phosphorylation of Hic-5 facilitated the interaction with tensin1 to prevent β1 integrin internalization and trafficking to the lysosome. The interaction between Hic-5 and tensin1 was mechanosensitive, promoting fibrillar adhesion formation and fibronectin fibrillogenesis in a rigidity dependent fashion. Importantly, this Src dependent mechanism was conserved in three-dimensional (3D) ECM environments. Immunohistochemistry of tensin1 showed enrichment in CAFs in vivo, which was abrogated upon deletion of Hic-5. Interestingly, elevated Hic-5 expression correlates with reduced distant metastasis free survival in patients with basal-like, HER2+ and grade 3 tumors. Thus, we have identified Hic-5 as a crucial regulator of ECM remodeling in CAFs by promoting fibrillar adhesion formation through a novel interaction with tensin1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.