Abstract

Many plant and animal viruses have evolved suppressor proteins to block host RNA silencing at various stages of the RNA silencing pathways. Hibiscus chlorotic ringspot virus (HCRSV) coat protein (CP) is capable of suppressing the transiently expressed sense-RNA-induced post-transcriptional gene silencing (PTGS) in Nicotiana benthamiana. Here, constitutively expressed HCRSV CP from transgenic Arabidopsis was found to be able to rescue expression of the silenced GUS transgene. The HCRSV CP-transgenic Arabidopsis (line CP6) displayed several developmental abnormalities: elongated, downward curled leaves and a lack of coordination between stamen and carpel, resulting in reduced seed set. These abnormalities are similar to those observed in mutations of the genes of Arabidopsis RNA-dependent polymerase 6 (rdr6), suppressor of gene silencing 3 (sgs3), ZIPPY (zip) and dicer-like 4 (dcl4). The accumulation of microRNA (miRNA) miR173 remained stable; however, the downstream trans-acting small interfering RNA (ta-siRNA) siR255 was greatly reduced. Real-time PCR analysis showed that expression of the ta-siRNA-targeted At4g29770, At5g18040, PPR and ARF3 genes increased significantly, especially in the inflorescences. Genetic crossing of CP6 with an amplicon-silenced line (containing a potato virus X-green fluorescent protein transgene under the control of the 35S cauliflower mosaic virus promoter) suggested that HCRSV CP probably interfered with gene silencing at a step after RDR6. The reduced accumulation of ta-siRNA might result from the interference of HCRSV CP with Dicer-like protein(s), responsible for the generation of dsRNA in ta-siRNA biogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call