Abstract

We investigate the possibility of probing the large scale structure in the universe at large redshifts by studying fluctuations in the redshifted 1420 MHz emission from the neutral hydrogen (HI) at early epochs. The neutral hydrogen content of the universe is known from absorption studies forz ≲ 4.5. TheHI distribution is expected to be inhomogeneous in the gravitational instability picture and this inhomogeneity leads to anisotropy in the redshifted HI emission. The best hope of detecting this anisotropy is by using a large low-frequency interferometric instrument like the Giant Meter-Wave Radio Telescope (GMRT). We calculate the visibility correlation function 〈Vv(U) Vv′(U)〉 at two frequenciesi andv′ of the redshiftedHI emission for an interferometric observation. In particular we give numerical results for the two GMRT channels centered aroundν = 325 MHz andν = 610 MHz from density inhomogeneity and peculiar velocity of the HI distribution. The visibility correlation is- 10-10-10-9 Jy2. We calculate the signal-to-noise for detecting the correlation signal in the presence of system noise and show that the GMRT might detect the signal for integration times - 100 hrs. We argue that the measurement of visibility correlation allows optimal use of the uncorrelated nature of the system noise across baselines and frequency channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.