Abstract
The invention of chromosome conformation capture (3C) techniques, in particular the key method Hi-C providing genome-wide information about chromatin contacts, revolutionized the way we study the three-dimensional organization of the nuclear genome and how it affects transcription, replication, and DNA repair. Because the frequency of chromatin contacts between pairs of genomic segments predictably relates to the distance in the linear genome, the information obtained by Hi-C has also proved useful for scaffolding genomic sequences. Here, we review recent improvements in experimental procedures of Hi-C and its various derivatives, such as Micro-C, HiChIP, and Capture Hi-C. We assess the advantages and limitations of the techniques, and present examples of their use in recent plant studies. We also report on progress in the development of computational tools used in assembling genome sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.