Abstract

This paper presents a highly birefringence (Hi-Bi) photonic crystal fiber (PCF)-based single-polarization filter, which consists of copper microwires. Copper is chemically stable and the use of microwires is benefit to fabricate than any metal-coated PCF. The filter characteristics are inspected by the full-vector finite element method (FEM). The proposed filter can filter out y-polarized mode, while the x-polarized mode can be guided. The confinement loss of the y-polarized mode at the wavelength of 1.31 μm is achieved of 696.79 dB/cm, while the x-polarized loss is only 4.34 dB/cm. According to numerical results, 20 dB bandwidth of the proposed filter with a maximum value of crosstalk of 601.37 dB is achieved of 650 nm that range from 1.1 to 1.75 μm. Furthermore, the insertion loss of the guided mode (x-polarization) is as low as 0.142 dB for 1 mm of fiber length. Moreover, by optimizing the structural parameters, it has shown that the proposed filter can be effective at any wavelength at the optical communication window.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call