Abstract

Horizontal gene transfer (HGT) is an important driver in genome evolution, gain-of-function, and metabolic adaptation to environmental niches. Genome-wide identification of putative HGT events has become increasingly practical, given the rapid growth of genomic data. However, existing HGT analysis toolboxes are not widely used, limited by their inability to perform phylogenetic reconstruction to explore potential donors, and the detection of HGT from both evolutionarily distant and closely related species. In this study, we have developed HGTphyloDetect, which is a versatile computational toolbox that combines high-throughput analysis with phylogenetic inference, to facilitate comprehensive investigation of HGT events. Two case studies with Saccharomyces cerevisiae and Candida versatilis demonstrate the ability of HGTphyloDetect to identify horizontally acquired genes with high accuracy. In addition, HGTphyloDetect enables phylogenetic analysis to illustrate a likely path of gene transmission among the evolutionarily distant or closely related species. The HGTphyloDetect computational toolbox is designed for ease of use and can accurately find HGT events with a very low false discovery rate in a high-throughput manner. The HGTphyloDetect toolbox and its related user tutorial are freely available at https://github.com/SysBioChalmers/HGTphyloDetect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.