Abstract

HgS colloidal quantum dots (CQDs) are synthesized at room temperature using a dual-phase method. The HgS CQDs ranging from 3 to 15 nm exhibit air-stable n-doping and infrared intraband absorptions. For HgS CQDs of small sizes, the doping density is close to 2 electrons per dot, while for larger ones, their intraband absorption peaks shift to as far as 10 μm and exhibit Lorentzian line shapes. Under reducing potentials, these long-wavelength absorption peaks increase in strength and blue shift. This behavior can be explained through a classical model of the local field, showing how the degenerate single-electron transitions shift to a frequency that is the quadratic mean of the individual transition and a surface plasmon coming from a number of oscillators. This indicates that the intraband absorption of large, n-doped HgS CQDs is therefore becoming a surface plasmon. The same synthetic method works for HgS/CdS core/shells. Encapsulating HgS in a CdS shell removes the natural n-doping of the HgS cores, res...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call