Abstract
The consequences of mutations in embryonic and fetal cells are serious and contribute to high prenatal sensitivity to mutagenic agents. An understanding of the factors that influence the yield of such mutations is important for management of adverse effects of perinatal exposures. Resistance to 6-thioguanine (6-TG) can be utilized to study mutational events at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus. HGPRT is X-linked and recessive. According to the Lyon hypothesis, male cells have only one X-chromosome and female cells randomly inactivate the second X-chromosome. This leads to the prediction that X-linked genes should be equally sensitive to the mutagenic effects of toxicants in male and female fetuses. We tested this supposition by in utero exposure of Syrian hamster fetuses to N-ethyl-N-nitrosourea (ENU) at day 12 of gestation. ENU is a strong carcinogen and mutagen. HGPRT mutations were detected by selection with 6-TG. Surprisingly. the male cells had 4 to 5 times more 6-TG mutants than female cells, in two separate experiments (p<0.001). Ouabain resistance, reflecting a co-dominant autosomal locus, was used as a control, and we found that there was no significant difference between male and female cells (p=0.549). Possible reasons for the sex difference in mutations include escape of the second X-chromosome from inactivation in some of the female cells, or higher mutability in male cells. In any event, there is a gender difference in vulnerability to mutation of an X-linked gene that has previously not been appreciated, and that may be relevant to toxicological studies of such genes. HGPRT is frequently used to monitor mutagenic events in human fetuses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Birth Defects Research Part B: Developmental and Reproductive Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.