Abstract

The ligand hepatocyte growth factor/scatter factor (HGF) and its receptor tyrosine kinase, c-Met, are highly expressed in most human malignant mesotheliomas (MMs) and may contribute to their increased growth and viability. Based upon our observation that RNA silencing of fos-related antigen 1 (Fra-1) inhibited c-met expression in rat mesotheliomas (1), we hypothesized that Fra-1 was a key player in HGF-induced proliferation in human MMs. In three of seven human MM lines evaluated, HGF increased Fra-1 levels and phosphorylation of both extracellular signal-regulated kinase 5 (ERK5) and AKT that were inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor, LY290042. HGF-dependent phosphorylation and Fra-1 expression were decreased after knockdown of Fra-1, whereas overexpression of Fra-1 blocked the expression of mitogen/extracellular signal-regulated kinase kinases (MEK)5 at the mRNA and protein levels. Stable MM cell lines using a dnMEK5 showed that basal Fra-1 levels were increased in comparison to empty vector control lines. HGF also caused increased MM cell viability and proliferating cell nuclear antigen (PCNA) expression that were abolished by knockdown of MEK5 or Fra-1. Data suggest that HGF-induced effects in some MM cells are mediated via activation of a novel PI3K/ERK5/Fra-1 feedback pathway that might explain tumor-specific effects of c-Met inhibitors on MM and other tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.