Abstract
ABSTRACTThe alloy variation of the band gap and the electron and hole effective masses have been calculated for HgCdTe and HgZnTe. Band-gap bowing is larger in HgZnTe than in HgCdTe because of the larger bond length mismatch of HgTe and ZnTe; electron and hole effective masses are found to be comparable for the two alloys for a given band gap. We have calculated the electron mobility in both alloys with contributions from phonon, impurity, and alloy scattering. Contributions to the E1 line width due to alloy and impurity scattering in Hg0.7Cd0.3Te have been calculated. Results of calculations of the vacancy formation energies in HgTe, ZnTe, and CdTe are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.