Abstract
A tall barrier superlattice structure based on mercury cadmium telluride material system is proposed that can achieve a large effective thermoelectric figure of merit (ZTmax∼3) at cryogenic temperatures. Calculations based on the Boltzmann transport equation taking into account the quantum mechanical electron transmission show that the Seebeck coefficient can be increased significantly at low temperatures with the use of nonplanar barriers as the thermal spreading of the electron density is tightened around the Fermi level. This provides a better asymmetric differential conductivity around the Fermi level close to the top of the barrier. Consequently, a high thermoelectric power factor is produced resulting in a large ZT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.