Abstract
In this article, we propose a novel method to address the two-dimensional (2D) image-based 3D object retrieval problem. First, we extract a set of virtual views to represent each 3D object. Then, a soft-attention model is utilized to find the weight of each view to select one characteristic view for each 3D object. Second, we propose a novel Holistic Generative Adversarial Network (HGAN) to solve the cross-domain feature representation problem and make the feature space of virtual characteristic view more inclined to the feature space of the real picture. This will effectively mitigate the distribution discrepancies across the 2D image domains and 3D object domains. Finally, we utilize the generative model of the HGAN to obtain the “virtual real image” of each 3D object and make the characteristic view of the 3D object and real picture possess the same feature space for retrieval. To demonstrate the performance of our approach, We established a new dataset that includes pairs of 2D images and 3D objects, where the 3D objects are based on the ModelNet40 dataset. The experimental results demonstrate the superiority of our proposed method over the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.