Abstract

The sensing of heavy metal ion and information encryption are two very important research areas. Therefore, developing multi-functional materials capable of sensing heavy metal ions and encrypting information is highly important. In this work, three [1 + 1] lanthanide clusters [Ln(TFBA)3(dmp) (H2O)2]2 (Ln = Tb3+Tb1+1, Eu3+Eu1+1, Gd3+Gd1+1, HTFBA = 2,3,4,5-tetrafluorobenzoic acid, dmp = 4,7-dimethyl-1,10-phenanthroline) were designed and synthesized. Among them, Tb1+1 shows excellent luminescence sensing towards Hg2+ (Ex = 350 nm, Em = 545 nm). Results demonstrates the sensing with high selectivity, strong anti-interference, 20-s response time, high accuracy, excellent linear relationship in 0–20.0 μM, and a very low limit of detection (0.02 ppb). Furthermore, paper strips based on Tb1+1 is fabricated for visual detection of Hg2+ in real samples of tap water, lake water, human urine, and human serum. More interestingly, a new method for confidentiality of information is realized through multi-color anti-counterfeiting patterns with the [1 + 1] lanthanide cluster ink, based on the luminescence “on-off” sensing towards Hg2+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call