Abstract
The United States Environmental Protection Agency/Environmental Response Team (US EPA/ERT), in collaboration with St. John's College, Dr. B. R. Ambedkar University, Agra, India, is conducting a study to determine Hg vapor emission rates resulting from broken compact fluorescent lamps (CFLs) in a residential setting. The overall objectives of the study are to determine Hg vapor emission data and provide homeowners with cleanup procedures and disposal options for broken CFLs. Most of the currently available CFLs in the US market are manufactured in China for US companies. Several different types of CFLs were purchased from local stores and their Hg content was determined. Based on previous studies, such as the 2011 study by Singhvi and colleagues, five popular spiral CFLs were selected for emission studies in an acrylic chamber. This study found that Hg vapor emissions from CFLs may be significantly greater than those from beads of liquid Hg with weights comparable to the Hg content of the CFLs. The average 24-hour Hg loss into the atmosphere from CFLs broken on a plastic surface ranged from 0.6% to 22% of the bulb content, while that for CFLs broken on carpet ranged from 2.6% to 28%. Projections for a 12 foot × 9.33 foot × 8 foot (25.4 m3) room based on the chamber measurements in this study indicate that CFL breakage in some household settings may produce 24-hour Hg concentrations above the 2000 Agency for Toxic Substances and Disease Registry (ATSDR) minimum risk level (MRL) of 0.2 μg/m3, for typical air exchange rates. This study also indicates that Hg emission may not be proportional to exposed surface area based on experiments using liquid Hg with different surface areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.