Abstract

The F plasmid of Escherichia coli allows horizontal DNA transfer between an F(+) donor cell and an F(-) recipient. Expression of the transfer genes is tightly controlled by a number of factors, including the following plasmid-encoded regulatory proteins: TraJ, the primary activator of the 33-kb tra operon, and the autoregulators TraM and TraY. Here, we demonstrate that the host RNA binding protein, Hfq, represses TraJ and TraM synthesis by destabilizing their respective mRNAs. Mating assays and immunoblot analyses for TraM and TraJ showed that transfer efficiency and protein levels increased in host cells containing a disruption in hfq compared to wild-type cells in stationary phase. The stability of transcripts containing a putative Hfq binding site located in the intergenic untranslated region between traM and traJ was increased in hfq mutant donor cells, suggesting that Hfq destabilizes these transcripts. Electrophoretic mobility shift assays demonstrated that Hfq specifically binds this region but not the antisense RNA, FinP, encoded on the opposite strand. Together, these findings indicate that Hfq regulates traM and traJ transcript stability by a mechanism separate from FinOP-mediated repression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.