Abstract

The Pseudomonas aeruginosa quorum-sensing (QS) systems, Las and Rhl, control the production of several virulence factors and other proteins, which are important to sustain adverse conditions. A comparative transcriptome analysis of a rpoS (-) and a rpoS(-)hfq( -) strain indicated that the Sm-like RNA-binding protein Hfq affects approximately 5% of the P. aeruginosa O1 transcripts. Among these transcripts 72 were identified to be QS regulated. Expression studies revealed that Hfq does not control the master regulators of the Las system, LasR and LasI. Upon entry into stationary phase, Hfq exerted a moderate stimulatory effect on translation of the rhlR gene and on the qscR gene, encoding a LasR/RhlR homologue. However, Hfq considerably stimulated translation of the rhlI gene, encoding the synthetase of the autoinducer N-Butyryl-homoserine lactone (C4-HSL). Correspondingly, the C4-HSL levels were reduced in a hfq(-) strain. To elucidate the stimulatory effect of Hfq on rhlI expression we asked whether Hfq affects the stability of the regulatory RNAs RsmY and RsmZ, which have been implicated in sequestration of the translational repressor RsmA, which in turn is known to negatively regulate RhlI synthesis. We demonstrate that Hfq binds to and stabilizes the regulatory RNA RsmY, which is further shown to bind to the regulatory protein RsmA. A model for the Hfq regulatory network is presented, wherein an alleviation of the negative effect of RsmA accounts for the observed stimulation of rhlI expression by Hfq. The model is corroborated by the observation that a rsmY(-) mutant mimics the hfq(-) phenotype with regard to rhlI expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.