Abstract

Solubility limits and constitutional defects in Laves phase intermetallics are investigated with the C15 HfCo 2 system. Several binary alloy compositions based on HfCo 2 are characterized by optical and scanning electron microscopy (SEM), electron microprobe analysis (EPMA), X-ray diffraction (XRD), and density measurements. Rietveld refinements of XRD scans are used to determine lattice constants, anisotropic strain parameters, and atomic occupancies. Compositional trends are compared against predicted or calculated trends due to an anti-site substitution or vacancy defect mechanism. Geometric models and atomic size factors are used to establish solubility limits and to give insight into defect mechanisms. Results from various, complementary experiments are consistent with anti-site substitutions on both sides of HfCo 2 stoichiometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.