Abstract

An interface between toluene and water was utilized to synthesize ca. 10 nm thick of anatase TiO2 nanosheets (NSs) with 82% exposure of {001} facets. In this procedure, highly corrosive and toxic HF, which was generally used to prepare TiO2 NSs with largely exposed high energy facets, was avoided. Furthermore, the surfaces of the NSs were quite clean as suggested by XPS analysis. Serving as anode materials in lithium-ion batteries, these as-prepared anatase TiO2 NSs manifested a low initial irreversible capacity loss (12.5% at 1 C), an excellent capacity retention at 10 C charge-discharge rate (101.9 mA h g(-1) after 100 cycles), and enhanced rate performance at 0.5-10 C current rates in compared with Degussa P25 TiO2 nanoparticles (NPs). Their excellent electrochemical performances were mainly derived from the large proportion of {001} exposed facets and a very short diffusion pathway, which allowed fast and efficient Li(+) transportation in the electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.