Abstract
The very rapid reaction rate of the H2 + F2 chain reaction coupled with the efficient formation of chain carriers by fast electron beam radiolysis of F2 and SF6 provide laser power of about 1012 watts/liter and qualify the HF chemical laser as a possible laser for driving compression fusion experiments. This laser differs radically from all other possible fusion lasers in that optical energy storage is not necessary. It derives its high power from the real time burn rate of the H2 + F2 fuel. The laser gain is very high, but of short duration making the amplifier system much simpler than those envisioned for low gain high storage lasers. Figure 1 shows the scheme. It has an oscillator, amplifier 1, and amplifier 2. The beam is split into the number of beams to be used in the experiment after amplifier 2. In the figure the beam is split into four. Each of the beams, C, D, E, and F, are amplified by a final amplifier and beam G is used for triggering spark gaps for the e-beam transmission lines for the final stage amplifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.