Abstract

Hexose transport in glucose-starved human fibroblasts was readily reversed by glucose refeeding. This hexose transport reversal was not inhibited by tunicamycin (1.5 μg/ml) but was blocked by cycloheximide (20 μg/ml). The ability of insulin (100 mU/ml) to stimulate hexose transport was returned by glucose refeeding and this was not affected by tunicamycin. Cycloheximide which blocked the glucose refeeding effect on hexose transport, decreased the ability of insulin to stimulate hexose transport. Specific 125I-insulin binding was increased by glucose refeeding of glucose-starved cells and this change in binding was inhibited by tunicamycin and cycloheximide. Thus, it appears that under the conditions employed in human fibroblasts, the ability of insulin to stimulate hexose transport is differentially regulated more by factors affecting basal hexose transport than by those affecting changes in insulin binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.