Abstract
In brain and tumor cells, the hexokinase isoforms HK-I and HK-II bind to the voltage-dependent anion channel (VDAC) in the outer mitochondrial membrane. We have previously shown that HK-I decreases murine VDAC1 (mVDAC1) channel conductance, inhibits cytochrome c release, and protects against apoptotic cell death. Now, we define mVDAC1 residues, found in two cytoplasmic domains, involved in the interaction with HK-I. Protection against cell death by HK-I, as induced by overexpression of native or mutated mVDAC1, served to identify the mVDAC1 amino acids required for interaction with HK-I. HK-I binding to mVDAC1 either in isolated mitochondria or reconstituted in a bilayer was inhibited upon mutation of specific VDAC1 residues. HK-I anti-apoptotic activity was also diminished upon mutation of these amino acids. HK-I-mediated inhibition of cytochrome c release induced by staurosporine was also diminished in cells expressing VDAC1 mutants. Our results thus offer new insights into the mechanism by which HK-I promotes tumor cell survival via inhibition of cytochrome c release through HK-I binding to VDAC1. These results, moreover, point to VDAC1 as a key player in mitochondrially mediated apoptosis and implicate an HK-I-VDAC1 interaction in the regulation of apoptosis. Finally, these findings suggest that interference with the binding of HK-I to mitochondria by VDAC1-derived peptides may offer a novel strategy by which to potentiate the efficacy of conventional chemotherapeutic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.